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Abstract

This paper discusses in detail the development of a numerical model capable of simulating microstructural evolution
and macroscopic deformation during sintering of complex powder compacts. The model based on the kinetic Monte
Carlo (Potts) approach simulates grain growth, vacancy diffusion, and pore annihilation at grain boundaries, which
is responsible for densification. Results of 2D simulations for perfect close-packed and random starting configurations
are presented and discussed. The microstructural evolution is used to obtain the sintering stress––the macroscopic stress
that is equivalent to the microstructural driving force for deformation.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Sintering is the processing technique in which parts formed of powder materials are thermally treated at
temperatures below the melting point of the main constituent for the purpose of increasing the strength of
the parts by bonding particles together. All ceramic materials and many high temperature metals are sin-
tered because this process allows parts to be formed at temperatures well below their melting point, which
range from 1400 to 3000 �C depending on the material. A powder compact before sintering is a porous
packing of loose powder that is held together by weak surface bonds. Initial porosity of the compact typ-
ically ranges from 35% to 50% of full density. During sintering the individual particles fuse together to cre-
ate a dense, strong monolithic part.

The driving force for the sintering process is the reduction in surface free energy of the particle.
This reduction is achieved by diffusional transport of material from the centers of particles to the
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particle–particle necks. As individual particles fuse, the surface area of the particles decreases. This leads to
the free energy reduction in the system, which drives sintering. Macroscopically this driving force can be
conceptualized as sintering stress (Ashby, 1990; Beere, 1975; Bordia and Scherer, 1988; DeJonghe and
Rahaman, 1988; Geguzin, 1984; Rahaman et al., 1986; Skorohod, 1972). Thus, unlike classic mechanical
problems where microstructure controls the response of material to some applied load and develops due
to the applied load, in sintering, like in many other problems in Materials Science (e.g., recrystallization),
microstructural evolution provides the driving force of the deformation. Therefore, accurate simulation of
microstructural evolution––the evolution of particle size, shape, and packing, the evolution of pore size,
shape, and distribution, details of material transport, etc.––during sintering is necessary to predict macro-
scopic forces and deformation of a part being sintered.

Similar to other areas of Materials Science, modeling of sintering comprises two distinct approaches:
microstructural mesoscopic models and macroscopic continuum models. Despite the significant progress
achieved in understanding microstructural processes of sintering, the connection between the micro- and
macrostructural models is still approximated by phenomenological constitutive relations based on highly
idealized geometries. The latter statement is true not just for the current state of sintering modeling, but
also for the state of simulation of a wide range of different phenomena for which macrostructural evolution
is determined, at least in part, by microstructural rearrangements. The problem is that macroscopic behav-
ior, while dependent on the underlying local interaction mechanisms, is controlled by the whole set of local
interactions, i.e., by collective microstructural phenomena.

Until recently, simulation of microstructural evolution of large systems was not feasible due to the com-
puter power limitations. It is becoming increasingly possible to simulate microstructural behavior of large
systems, and this development is paving the way for embedding microstructural evolution into macroscopic
models. For instance, in dislocation-based plasticity modeling only in the late 1990s did it become viable to
directly calculate interactions of large numbers of dislocations (Schwarz, 1999; Needleman and Van Der
Giessen, 2001; Devincre et al., 2001), which in turn allowed plasticity models to move beyond continuum
phenomenological theories that rely on field quantities to approximate collective microstructural phenom-
ena (Walgraef and Aifantis, 1988; Kubin and Estrin, 1990; Ananthakrishna, 1993; Glazov and Laird, 1995).

In the modeling of sintering the need for the incorporation of mesoscopic simulations into macroscopic
models is even greater because microstructural evolution provides the driving force for macroscopic defor-
mation in sintering. Therefore, a mesoscopic model of sintering capable of simulating large powder com-
pacts could be a step to more realistic macroscopic models. The need for such a model can hardly be
overstated. Although great progress has been made in the last 50 years in understanding microstructural
evolution during sintering, current models of sintering (Zeng et al., 1998; Pan et al., 1998; Zhou and Derby,
1998; Jagota and Dawson, 1988; Bullard, 1997; Zhang and Scheibel, 1995), still consider highly idealized
geometries with limited number of circular or spherical particles. While these models have provided much
insight into the sintering process by predicting shrinkage rates, geometric changes in the particles and other
information, their ability to predict characteristics of a complex powder compact has remained limited. We
present a model that is capable of simulating coarsening and densification in a powder compact at all stages
of sintering. This capability will allow us to predict density distribution and macroscopic shape changes in a
body.

There is a large body of work treating complex diffusion and transport mechanisms during different
stages of sintering (Kuczynski, 1950; Kingery and Berg, 1955; Coble, 1958; Johnson, 1969; Ashby,
1974), usually applied to a rather limited number of particles or particular geometries. For instance, Ashby
(Ashby, 1990) assumes sintering of a powder compact consisting of spherical particles of single size and uses
statistical methods (Ashby, 1990; Arzt, 1982; Fischmeister et al., 1978; Fischmeister and Arzt, 1983) to
determine the number of contact neighbors, sintering pressure, and densification. More recent analytical
and numerical models of sintering make fewer assumptions and are able to treat the details of shape change,
shrinkage rate or other characteristic more accurately in a sintering compact. These works lead to greater
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understanding of the sintering process and to better predictive models of sintering. However, they do not
capture the complexity of a real sintering system. Furthermore, these models treat each stage of sintering
based on a different set of assumptions, while it would be beneficial to have a unified model capable of treat-
ing all the stages of sintering based on the underlying physics.

The model used to simulate sintering in this work is based on the kinetic Monte Carlo (Potts) model
(Wu, 1982), which was used successfully to model grain growth and pore migration previously (Anderson
et al., 1984; Wejchert et al., 1986; Holm et al., 1991). Hassold et al. (1990) used a similar kinetic Monte
Carlo model to simulate final stage sintering, by resizing the pores based on the mean distance between
pores. Rather than shrink pores, as Hassold et al. (1990) did, we simulate the formation, diffusion, and
annihilation of vacancies. A vacancy annihilation mechanism based on the view developed in the stereolog-
ical theory of sintering (DeHoff, 1989) is added to the model in order to simulate densification. This mech-
anism comprises vacancy migration from the pores to grain boundaries and vacancy annihilation at the
boundaries. The annihilation occurs at a uniform rate along the grain boundary and yields densification.
Centers of mass of adjacent grains move closer together in the process. The methodology was applied to
sintering of three particles in a previous work (Tikare et al., 2003). In this work we extend this model to
simulate sintering in a complex powder compact consisting of a large number of particles of arbitrary
shape. All simulation results presented in this paper are obtained in 2D.

The last part of the paper is devoted to the thermodynamic connection between the mesoscale simula-
tions and macroscopic continuum models of sintering. We discuss a methodology of obtaining the sintering
stress from mesoscopic simulations and compare the results with several analytical formulae.
2. Potts model

A kinetic Monte Carlo model (Wu, 1982) was used to simulate 2D microstructural evolution during sin-
tering. It can model the following processes:

1. Grain growth by short range diffusion of atoms from one side of the grain boundary to the other;
2. Long range diffusion of pores by surface diffusion and of vacancies/material by grain boundary diffusion;
3. Vacancy annihilation at grain boundaries. 1

In the model, an ensemble of grain sites and pore sites is allowed to populate a square lattice. The grain
sites can assume one of Q distinct, degenerate states, where the individual state is designated by the symbol
q; qgrain = [1,2, . . . ,Q]. The pore sites can assume only one state, qpore = �1. Contiguous grain sites of the
same state q form a grain and contiguous pore sites form a pore. Grain boundaries exist between neighbor-
ing grain sites of different states, q, and pore-grain interfaces exist between neighboring pore and grain sites.
The equation of state for these simulations is the sum of all the neighbor interaction energies in the system
given by
1 In
E ¼ 1

2

XN
i¼1

X8

j¼1

ð1� dðqi; qjÞÞ ð1Þ
where N is the total number of sites, d(qi,qj) is the Kronecker delta with d(qi = qj) = 1 and d(qi 6¼ qj) = 0, qi
is the state of the grain or pore at site i, and qj is the state of the nearest neighbor at site j. Thus, the only
energy considered in the simulation is the interfacial energy with each unlike neighbor contributing one
arbitrary unit of energy to the system. As pore sites can assume only one state, qpore = �1, there are no
this approximation we refer to a single pore site as a vacancy, while denoting more than one contiguous pore sites as a pore.
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pore boundaries and all pores sites coalesce. In contrast, grain sites can assume many different states mak-
ing grain boundaries possible. This yields a two-component, two-phase system with uniform, isotropic
interfacial energies between grains and between grains and pores.

Grain growth is simulated using the method developed in previous works (Anderson et al., 1984; Wejc-
hert et al., 1986; Holm et al., 1991). First a grain site is chosen at random from the simulation space. Then a
new state q is chosen at random from the Q possible states in the system. The grain site is temporarily as-
signed the new state and the change in energy is evaluated using (1). Next the standard Metropolis algo-
rithm is used to perform the grain growth step based on Boltzmann statistics. A random number, R,
between 0 and 1 is generated. The transition probability, P, is calculated using
2 In
sites.
P ¼ exp
�DE
kBT

� �
for DE > 0

1 for DE6 0

8<
: ð2Þ
where kB is the Boltzmann constant and T is temperature. If the R6P, then the grain growth step is ac-
cepted, if not, the original state is restored. The simulation temperature used for grain growth was
kBT = 0, which has been shown to simulate grain growth well (Holm et al., 1991; Tikare and Cawley, 1998).

Pore migration is simulated using conserved dynamics (Hassold et al., 1990), so that the total number of
pore sites and grain sites is the same after a pore migration step. A pore site is chosen and next a neighbor-
ing grain site is chosen. The two sites are temporarily exchanged with the grain site assuming a new state q
where q results in the minimum energy. This minimum-energy, pore-grain exchange simulates pore migra-
tion by surface diffusion (Tikare et al., 2003). The change in energy for this exchange is calculated using (1)
and again the standard Metropolis algorithm is used to perform the pore migration step using (2) to deter-
mine the transition probability. The simulation temperature used for the pore migration step was
kBT = 0.7. This higher temperature was necessary to simulate pore migration and is discussed in another
work (Tikare and Holm, 1998). Time in the Potts model is measured in units of Monte Carlo steps
(MCS); 1 MCS corresponds to N attempted changes where N is the total number of sites in the system.

Vacancy, for the purposes of this work, is defined as a single pore site surrounded by grain sites. Vacancy
annihilation was simulated in the previous work, sintering of three particles, by exchanging the vacancy
with a grain site. The grain site for this annihilation event was selected by drawing a straight line from
the isolated pore site through the center of mass of the adjacent grain to the outside boundary of that par-
ticle. This algorithm conserves mass globally, moves the center of mass of the adjacent grain towards the
annihilation site, and annihilates a vacancy. Extending this algorithm to a large system with many particles
is not trivial as very few grains have an external surface. The development of the annihilation algorithm will
be presented in the following section.
3. Model development for microstructural evolution with densification

Our model incorporates the concept of densification developed in the stereological theory of sintering
(DeHoff, 1989). In this approach, the densification mechanism comprises vacancy migration from pores
to grain boundaries and vacancy annihilation at the grain boundaries. DeHoff visualized this process as
vacancies being painted on the grain boundary, with an entire monolayer of vacancies annihilated, so that
the centers of mass of adjacent grains move towards that grain boundary. The rate of the process is limited
by the time needed for vacancies to diffuse and cover the entire grain boundary. This process is simulated as
follows. A pore site is chosen and, if it happens to be an isolated pore site––a vacancy 2––in contact with a
the following we refer to contiguous collections of pore sites as pores, while the term ‘‘vacancy’’ is used to denote single pore



Fig. 1. Schematic of the jump algorithm. Black color denotes pores and grain boundaries; white denotes grains.
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grain boundary, it is annihilated. We examined several different algorithms for simulating annihilation. All
the algorithms were required to conserve mass globally and to move the centers of mass of the grains adja-
cent to the site being annihilated closer together. The frequency of annihilation attempts is adjusted inver-
sely proportionally to the average length of grain boundaries, as given by
t / Lgb

L0

� �2

ð3Þ
to simulate uniform annihilation along grain boundaries.

3.1. The densification algorithm

In this algorithm, pore annihilation is simulated by exchanging a vacancy (an isolated pore site) at a
grain boundary with a grain site at the surface. The grain site for the exchange is chosen at the intersection
of a line, drawn from the isolated pore site through the center of mass of the adjacent grain, and the outside
boundary of the sintering compact. After the exchange the grain site assumes the q state of the adjacent
grain. With ‘‘jumps’’ to the outer boundaries of the compact being simulated this routine to a great extent
homogenizes local deformation. The schematic of this algorithm is shown in Fig. 1.

For this algorithm to work there has to be a surface. Thus, periodic boundary conditions cannot be used.

3.2. Examples of microstructural evolution

First we performed simulations with perfect close-packed circular particles as the starting configuration.
The resulting microstructures at different times are shown in Fig. 2. The densification curve is shown in Fig.
3. Time, as is customary in such simulations, is measured in Monte Carlo steps.

Microstructures shown in Fig. 2 are qualitatively quite similar to the classic experimental results of Alex-
ander and Balluffi (1957) on sintering of copper wires. As time progresses pores become smaller due to the
vacancies diffusing along grain boundaries and their subsequent annihilation, centers of mass of adjacent
grains come closer together. Internal grains stay the same size since grain boundaries between them have
no curvature. They attain the hexagonal equilibrium shape as is expected. External grains, which cannot
become hexagonal, tend to decrease in size to reduce the free surface area and, hence, the energy of the
system.



Fig. 2. Microstructures obtained from a perfect close-packed starting configuration: (a) after 104 MCS, (b) after 3 · 104 MCS, and (c)
after 105 MCS.
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Fig. 3. Densification curve of the close-packed powder compact.
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One potential artifact of the model is a possibility of artificial size differences between exterior and inte-
rior grains. In order to check whether this occurs, we calculate average sizes of exterior and interior grains.
These separate statistics shown in Fig. 4 are needed to understand whether replacing pores with grain sites
from the boundary alters the grain size statistics in any significant way. For the close-packed initial config-
uration these differences are rather small (less than 5%) relative to the average grain size during the simu-
lation. In addition, due to the tendency of outer grains to decrease in size to minimize the energy of the
system discussed above, only a part of this difference should be attributed to the possible artifact of the
model.

Thus, the algorithm performs well for a perfect close-packed initial configuration and leads to reasonable
results.

In order to test the methodology further, we performed calculations with randomly packed equi-axed
particles of different sizes and with higher initial porosities. As in the previous simulations vacancies diffuse
along the grain boundaries and pores shrink due to annihilations, but, unlike the case of a close-packed
initial configuration of same size particles that resulted in straight grain boundaries, systems with a random
starting configuration exhibit pore and grain coarsening driven by grain boundaries� curvature. Grain
growth accelerates as pores are being annihilated, which suggests, as expected, that grain coarsening is
pinned by pores. The densification curve and microstructures at different times are shown in Figs. 5 and
6, respectively.

As stated above, one of our concerns was the possibility that the proposed algorithm alters grain size
statistics. Fig. 7 shows grain and pore size statistics for the simulation for a random initial configuration.
Here, unlike the case of perfect packing, the difference in grain size of exterior and interior grains is more
pronounced, especially, if we consider relative sizes. Nevertheless, grain growth of all grains including exte-
rior grains, as evidenced by Fig. 7, is much higher than the rate of exterior grain shrinkage due to
annihilation.

In addition, the number of exterior grains is much smaller than the number of interior grains in these
simulations. Therefore, the overall grain statistics is affected only insignificantly.
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Fig. 4. Grain and pore-size statistics for densification of the close-packed powder compact; Average sizes are shown as function of
time (in MCS).
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Fig. 5. Densification curve of a randomly packed non-uniform powder.

Fig. 6. Microstructural evolution of a randomly packed non-uniform powder.
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Fig. 7. Grain and pore size statistics for densification of a randomly packed non-uniform powder; average sizes are shown as function
of time (in MCS).
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4. Sintering stress: connecting microstructural simulations to macroscopic models

In order to simulate sintering, macroscopic continuum models incorporate sintering stress, which is
viewed as a macroscopic stress that is equivalent to the microscopic diffusional forces that cause deforma-
tion during sintering. The determination of this effective stress and its dependence on microstructural
parameters, especially porosity, has been the focus of many works (Ashby, 1990; Beere, 1975; Bordia
and Scherer, 1988; DeJonghe and Rahaman, 1988; Rahaman et al., 1986; Skorohod, 1972). Those works
rely on derivations that utilize highly idealized geometries.

Having developed the capability to realistically simulate microstructural evolution during sintering, we
can use the results of those simulations to calculate the sintering stress for macroscopic constitutive models.
In the following analysis such calculations are presented for a viscous model of sintering. The thermody-
namic approach is due to Skorohod (1972). 3

It can be easily shown that if a material is characterized by a free Helmholtz energy that depends on
temperature and volume only, the Second Law of thermodynamics can be written as
3 F
4 W

has to
Olevsk
rij � q
oH
oV

dij

� �
� _eij P 0 ð4Þ
HereH denotes the Helmholtz free energy, V stands for volume, q denotes density, rij is the stress tensor,
and _eij is the strain rate. 4 In deriving (4) we used the fact that for viscous materials stress and entropy de-
pend on the strain rate, but not on dotT. The system under consideration was also assumed to have no heat
flux.

Comparing (4) with the classical thermodynamic requirement for a viscous material
rij � _eij P 0 ð5Þ

we identify the additional stress term as sintering stress
P ij ¼ q
oH
oV

dij ð6Þ
Note that the requirement that the Helmholtz free energy be dependent on the volume leads to a hydro-
static sintering stress.

With this definition, the constitutive equation for a viscous sintering body can be written as
rij ¼ Kij½_eij; h; . . .	 þ P ij ð7Þ

where Kij½_eij; h; . . .	 is a functional defining the constitutive behavior of a viscous material. While such a
functional may depend on many microstructural parameters, the dependence on porosity, h, is necessary
for a sintering model.

As stated above, many models have been proposed to obtain the sintering stress based on idealized
geometries and microscopic sintering kinetics. The microstructural simulations described in this paper
provide a direct method of calculating the sintering stress from (6). Indeed, the microstructural evolution
model allows calculation of both volume and free energy as a function of time. Not the entire free energy
calculated in the microstructural evolution is related to volume deformation, though. Some microstructural
developments, such as grain boundary growth, while reducing the free energy of the system, do not neces-
sarily lead to changes in volume. It is not possible to determine the precise portion of the microstructural
or English-speaking readers a detailed discussion of this approach is given in Olevsky (1998).
hile the chosen notation is valid for small strains only, the statement is valid for finite deformations, in which case the strain rate
be replaced by the symmetric part of the velocity gradient (D). We use the small strain notation here for consistency with
y (1998) to which the reader is referred for details.
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free energy associated with deformation, but the free energy of the pore surfaces is a very good approxima-
tion, because it is exactly the reduction of pore surface that drives sintering.

Fig. 8 shows the calculated sintering stress for the closed-packed initial configuration with comparison to
the Ashby model (Ashby, 1990) and Skorohod model (Skorohod, 1972). 5 The sintering stress obtained
from microstructural simulations is, obviously, quite different from the analytical predictions. That is
not surprising, since the analytical models assume geometries that are different from the actual micro-
structural development. In particular, Skorohod (1972) assumes a statistical distribution of spherical
pores, while the Ashby (1990) second stage model assumes closed uniformly distributed spherical pores
at the corners of tetradecahedron grains. A close examination of the microstructural simulation for
the closed-packed initial configuration reveals that in the process of sintering, the pore undergoes a
topological change from concave pores of the initial configuration to the convex pores, which disappear
at the end of the process. Moreover, the same development is seen in the classic experiment of Alexander
and Balluffi (1957) on sintering of copper wires. 6 In our simulation, we need not make any assumptions
about the particle or pore shapes and thus can obtain more accurate sintering stress for different
microstructures.

We hypothesized that this topological change is responsible for the form of the sintering stress depend-
ence on density. To test this hypothesis, we developed an analytical model specifically for the closed-packed
microstructure with an emphasis on the pore topology. Because of the change in topology the model re-
quires two parts: the initial stage with concave pores and the final stage with convex pores. Assuming
the ideal closed-packed structure, we can limit ourselves to the consideration of just one pore.

For the initial stage model consider a pore between three particles in the close-packed structure
having nine circular edges (Fig. 9). Three of the edges are the surfaces of the particles, while matter
squeezed into the pore by sintering forms the six smaller edges. The schematic with two particles showing
the geometric details of this construction is given in Fig. 10. The smaller edges are needed to ensure a 120�
angle at the triple junctions. This angle is a natural assumption that follows from the energy balance at a
junction.
5 Two other analytical models for sintering stress that we compared to our results––Bouvard and McMeeking (1996) and Svoboda
and Riedel (1992)––are quite close to the Skorohod�s model in this case; they are not shown in Fig. 8 to make the picture more
readable.

6 This experiment is the most suitable for comparisons with 2D simulations.
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The particles are assumed to stay circular except for the pore boundary and the grain boundaries, which
are straight. As particle centers come closer together excess material from the overlapping zones is squeezed
into adjacent pores. This causes radii of small edges to increase, which is, essentially, the reason for the de-
crease in sintering pressure. As the edges grow closer together, they will eventually touch, which happens at
a density of around 0.96. The pore then becomes a three edge concave (Fig. 11). The connection between
the pore surface, which determines the free energy, and the distance between the centers of the particles is
determined based on the requirement of mass conservation––the amount of the material squeezed into the
pore has to be equal to the overlapping areas between the particles.
Fig. 9.
are the
b � 1

2
sinð2bÞ

� �
R2 ¼ 1

2
dðh� f Þ � ða � bÞR2 � d2ðc � sinðcÞÞ � 1

2
dð2 cosðaÞ � 1Þðh� lÞ ð8Þ
Schematic of the pore form in the initial sintering for a closed-packed structure. Grey areas belong to grains, solid black lines
gain and pore surfaces, and the dashed black line shows the initial form of the pore.

Fig. 10. Geometry of the initial stage of 2D sintering.



Fig. 11. A three edge concave pore. Straight black segments are grain boundaries, the dotted lines show the self-similar pore evolution.
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The notation is given in Fig. 10. In addition, we have geometric connections between different variables
c ¼ p
3
� a

d ¼
ffiffiffiffiffiffiffiffiffiffi
2p

q
ffiffiffi
3

p
s

R

b ¼ cos�1 d
2R

� �

a ¼ cos�1 d þ d
2R

� �
f ¼ R sinðbÞ

h ¼ Rþ d � d
2 cosðaÞ

� �

l ¼ ðRþ dÞ sinðaÞ � d cos
p
6

	 


ð9Þ
here q denotes relative density as before.
Unfortunately, the problem does not have an analytical solution, but it can be reduced to a transcenden-

tal equation, which can be solved numerically. This was done using the software package Mathematica 3
from Wolfram Research. The numerical results for this sintering stress labeled ‘‘Model Stage I’’ are shown
in Fig. 8.

For the concave pore of Fig. 11 (Stage II), the sintering stress can be determined analytically. Indeed, the
pore perimeter and the pore area can be easily calculated as
Lpore ¼ pR

Apore ¼
1

2
R2ðp �

ffiffiffi
3

p
Þ

ð10Þ
which leads to the sintering pressure being
P ¼ c
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

p �
ffiffiffi
3

p
r ffiffiffiffiffiffiffiffiffiffiffi

q
1� q

r
ð11Þ
This sintering stress is labeled ‘‘Model Stage II’’ in Fig. 8. Notice, that as stated above, the transition to
this stage occurs at the relative density about 0.96.
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As seen from Fig. 8, our model has qualitatively the same behavior as the simulation results, which sug-
gests that, indeed, the sintering pressure is very sensitive to the topological changes in the pore shape. Quan-
titatively, the analytical model does not coincide with the simulation results because the idealized
assumptions––like the one that particles stay circular except for the pore boundary and the grain bound-
aries, which are straight––are not satisfied exactly in the microstructural simulations. This, once again,
underscores the main point that in order to determine sintering stress, one must consider realistic micro-
structural topologies.

We have determined the sintering stress for the randomly packed non-uniform powder discussed above
also. As seen from Fig. 12, it stays nearly constant through the whole simulation. As in the case of the
closed-packed compact, the comparison with analytical models––we show the Skorohod model calculation
in Fig. 12––is not very good.
5. Discussion and conclusions

A model capable of realistic simulation of the microstructural evolution of a complex powder compact
has to satisfy several criteria. First of all, the model should not have any a priori geometric assumptions.
Second, the model should not rely on semi-arbitrary division of the sintering process into stages, relying,
rather, on more local, basic physical processes. The problem with the stages––and most current sintering
models have 2 or 3 stages––is that there are no exact points when one stage ends and the next begins
because the distinction between the stages is based on overall or average characteristics of the compact.
Consider, for instance, Ashby�s model (Ashby, 1990) that distinguishes two stages of sintering (microstruc-
tures with open and closed porosity) with different densification laws. Density is used as the criterion for
considering the compact in one or the other stage in this model, with the second stage starting at 0.92 of
the theoretical density of the compact. This value is based on consideration of a powder compact with
spherical particles and, thus, incorporates geometric assumptions. Other models use similar approaches
to criteria dividing the process of sintering into stages. And, the final requirement is that the model should
be scalable, i.e., it should be able to simulate large powder compacts.

The simulation technique we present satisfies all three requirements. The model does not need any geo-
metric assumptions because the microstructural development is simulated based on a set of simple local

rules and overall thermodynamic laws. The state of each pixel depends only on the state of its neighboring
pixels, not on the state of the whole system at each point in time. Thus, the system can exhibit the open and
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closed porosity stages as seen in microstructures in Fig. 6. However, the model does not require any a priori
information on those stages or any change in the simulation rules when the porosity becomes closed. The
Potts model, which is the basis of our sintering model, has been shown to be scalable (Anderson et al., 1984;
Wejchert et al., 1986; Holm et al., 1991). The addition of the annihilation mechanism, understandably,
slows the calculation, but not very significantly and does not require more memory usage. Therefore,
the third requirement is satisfied also.

The small artifact that the annihilation algorithm introduces––namely, the difference in average grain
size between the exterior and interior grains due to the annihilation procedure––is not significant because
the rate of grain growth is much higher than the rate of artificial shrinkage of the exterior grains. In addi-
tion, being a boundary effect, this artifact becomes less and less important with the increase of the simula-
tion size.

There is another important characteristic of the model that we need to address: by moving porosity to
the boundary regions, the procedure homogenizes the deformation of the simulation area. This feature
might even be conducive for the connection to macroscopic continuum models, which require some aver-
age, or homogenized, information from the microstructures, but because of it the algorithm does not allow
for the defect growth that occurs in many materials during sintering. The algorithm does allow for modi-
fications, like jumps to defects in addition to the jumps to the boundary of the compact, which can simulate
the defect growth. This issue together with the generalization to 3D, which is usually straightforward for
kinetic Monte Carlo algorithms, will be the focus of the further development of the mesoscopic model.

The thermodynamic connection between the microstructural simulations and the macroscopic contin-
uum models of sintering is one of the most important parts of the presented work. The methodology dis-
cussed is applicable for the systems with hydrostatic sintering stress, which is the case commonly used.
Currently, discussions of anisotropic sintering and, hence, of a possibility of a non-hydrostatic sintering
stress start to appear in literature (e.g., Tikare et al., accepted; Raj and Cannon, 1999; Stedman et al.,
1993; Watanabe et al., 1989). Our methodology of calculating the sintering stress is not directly applicable
to such a case. The reason is that the thermodynamic definition of the sintering stress analogous to (6)
would require the calculation of a tensor derivative of the free energy with respect to macroscopic strain,
while in the simulation the components of the macroscopic strain are given as functions of time and, hence,
are not independent for a simulation run. While the mesoscopic model is readily applicable to the case of
anisotropic sintering, as shown by Tikare et al. (accepted), the corresponding case of a non-hydrostatic sin-
tering stress requires additional study.
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